
JDK vs JRE vs JVM in Java: Key

Differences Explained
Updated on February 19, 2025
Java

By Anish Singh Walia

Sr Technical Writer

Introduction

Java is a powerful, platform-independent programming language widely used for
developing applications. Understanding the differences between JDK, JRE, and JVM is
crucial for Java developers. This article explains these three components in-depth,
providing practical use cases and common debugging solutions.

The difference between JDK, JRE, and JVM is one of the popular interview questions.
You might also be asked to explain JDK vs JRE vs JVM.

Understanding JDK, JRE, and JVM
Java Development Kit (JDK)

https://www.digitalocean.com/community/tags/java
https://www.digitalocean.com/community/users/asinghwalia
https://www.digitalocean.com/community/tutorials/difference-jdk-vs-jre-vs-jvm#introduction
https://www.digitalocean.com/community/tutorials/difference-jdk-vs-jre-vs-jvm#understanding-jdk-jre-and-jvm
https://www.digitalocean.com/community/tutorials/difference-jdk-vs-jre-vs-jvm#java-development-kit-jdk

The Java Development Kit (JDK) is a software development kit that provides a set of
tools and libraries for developing Java applications. It includes the Java Runtime
Environment (JRE), which is necessary for running Java programs, as well as
development tools such as compilers and debuggers. The JDK is essential for
developers who want to write, compile, and run Java code.
Use Case: Install the JDK when developing Java applications, compiling Java code, or
using Java frameworks like Spring Boot. For more information on setting up a Java
development environment, refer to our tutorial on How to Install Java With Apt.

Java Runtime Environment (JRE)
The Java Runtime Environment (JRE) is a package that provides the libraries and JVM
required to run Java applications. It does not include development tools, making it
suitable for users who only need to run Java programs without developing them. The
JRE is a subset of the JDK and is included in the JDK installation.

Use Case: Install the JRE when you only need to run Java applications but not develop
them. This is typically the case for end-users who want to run Java-based software
without modifying the code.

Java Virtual Machine (JVM)
The Java Virtual Machine (JVM) is a crucial component of the JRE that provides the
runtime environment for Java programs. It is responsible for executing Java bytecode
on any platform that supports JVM, making Java a “write once, run anywhere”
language. The JVM is included in the JRE and is not installed separately.

Use Case: The JVM is automatically included with the JRE installation, so there is no
need to install it separately.

Difference between JDK, JRE, and JVM

JDK, JRE, and JVM are core concepts of the Java programming language. We don’t
use these concepts in programming. But, as a Java developer, we should know about
them.

1. JDK

Java Development Kit aka JDK is the core component of Java Environment and
provides all the tools, executables, and binaries required to compile, debug, and
execute a Java Program. JDK is a platform-specific software and that’s why we have
separate installers for Windows, Mac, and Unix systems. We can say that JDK is the
superset of JRE since it contains JRE with Java compiler, debugger, and core classes.

2. JVM
JVM is the heart of the Java programming language. When we execute a Java program,
JVM is responsible for converting the byte code to the machine-specific code. JVM is
also platform-dependent and provides core java functions such as memory
management, garbage collection, security, etc. JVM is customizable and we can use
java options to customize it. For example, allocating minimum and maximum memory to

https://en.wikipedia.org/wiki/Java_Development_Kit
https://spring.io/projects/spring-boot
https://www.digitalocean.com/community/tutorial-collections/how-to-install-java-with-apt
https://www.digitalocean.com/community/tutorials/difference-jdk-vs-jre-vs-jvm#java-runtime-environment-jre
https://www.ibm.com/think/topics/jre
https://www.digitalocean.com/community/tutorials/difference-jdk-vs-jre-vs-jvm#java-virtual-machine-jvm
https://en.wikipedia.org/wiki/Java_virtual_machine
https://www.digitalocean.com/community/tutorials/difference-jdk-vs-jre-vs-jvm#difference-between-jdk-jre-and-jvm
https://www.digitalocean.com/community/tutorials/difference-jdk-vs-jre-vs-jvm#1-jdk
https://www.digitalocean.com/community/tutorials/difference-jdk-vs-jre-vs-jvm#2-jvm

JVM. JVM is called virtual because it provides an interface that does not depend on the
underlying operating system and machine hardware. This independence from hardware
and the operating system makes the Java programs write-once-run-anywhere.

3. JRE

JRE is the implementation of JVM. It provides a platform to execute java programs. JRE
consists of JVM, Java binaries, and other classes to execute any program successfully.
JRE doesn’t contain any development tools such as Java compiler, debugger, JShell,
etc. If you just want to execute a java program, you can install only JRE. You don’t need
JDK because there is no development or compilation of Java source code. Now that we
have a basic understanding of JDK, JVM, and JRE, let’s examine the difference
between them.

Comparison Table

Component Description Includes
Platform-

Dependent
Use Case

Installation

Requirements

Development

Tools

Execution

Environment

JDK

Java

Development

Kit

JRE, Java

compiler,

debugger,

core classes

Yes

For development,

compilation, and

execution of Java

programs

Separate

installers for

Windows, Mac,

and Unix

Java compiler,

debugger,

JShell

JVM

JVM
Java Virtual

Machine

Converts

byte code to

machine-

specific

code

Yes

Automatically

included with JRE

installation

Included with

JRE installation
None JVM

JRE
Java Runtime

Environment

JVM, Java

binaries,

other classes

Yes

For executing

Java programs

without

development or

compilation

Separate

installers for

Windows, Mac,

and Unix

None JVM

Practical Use Cases
When to Install JDK vs JRE
If you are a developer, you will need to install the JDK. The JDK includes the JRE, but
also provides additional tools such as the Java compiler and debugger. These tools are
essential for compiling and debugging Java code.

https://www.digitalocean.com/community/tutorials/difference-jdk-vs-jre-vs-jvm#3-jre
https://www.digitalocean.com/community/tutorials/difference-jdk-vs-jre-vs-jvm#comparison-table
https://www.digitalocean.com/community/tutorials/difference-jdk-vs-jre-vs-jvm#practical-use-cases
https://www.digitalocean.com/community/tutorials/difference-jdk-vs-jre-vs-jvm#when-to-install-jdk-vs-jre

If you only need to run Java applications, you can install the JRE. The JRE is a subset
of the JDK and includes the JVM, which is necessary for running Java programs.
However, it does not include the development tools provided by the JDK.

Checking Your Java Version and Environment Setup

To check your installed Java version, run:

java -version

javac -version # For JDK verification

Copy

Ensure the correct Java version is installed and configured properly.

Understanding JVM Configurations

JVM settings can impact application performance. Adjusting the heap size helps
optimize memory management:

java -Xms512m -Xmx1024m MyApp

Copy

 -Xms sets the initial heap size.

 -Xmx sets the maximum heap size.

In-depth JVM Breakdown
Just-In-Time (JIT) Compilation
The Just-In-Time (JIT) compiler is a crucial component of the JVM that significantly
enhances Java performance. It dynamically converts Java bytecode into native machine
code at runtime, allowing the JVM to execute Java programs more efficiently. This
process occurs transparently, without the need for manual compilation or intervention.
By compiling frequently executed code paths into native code, the JIT compiler reduces
the overhead of interpretation and improves the overall execution speed of Java
applications.

Garbage Collection

The JVM employs garbage collection to manage memory automatically, ensuring that
memory is released from objects no longer in use and mitigating the risk of memory
leaks. This process involves identifying objects that are no longer referenced or needed
by the application and reclaiming their memory space. By doing so, garbage collection
helps maintain the integrity of the system by preventing memory exhaustion and
promoting efficient memory utilization.

Common Errors and Debugging
“Java Not Recognized” Error

This error often occurs due to an incorrect installation or a missing PATH variable.

Solution:

https://www.digitalocean.com/community/tutorials/difference-jdk-vs-jre-vs-jvm#checking-your-java-version-and-environment-setup
https://www.digitalocean.com/community/tutorials/difference-jdk-vs-jre-vs-jvm#understanding-jvm-configurations
https://www.digitalocean.com/community/tutorials/difference-jdk-vs-jre-vs-jvm#in-depth-jvm-breakdown
https://www.digitalocean.com/community/tutorials/difference-jdk-vs-jre-vs-jvm#just-in-time-jit-compilation
https://www.ibm.com/docs/en/sdk-java-technology/8?topic=reference-jit-compiler
https://www.digitalocean.com/community/tutorials/difference-jdk-vs-jre-vs-jvm#garbage-collection
https://www.digitalocean.com/community/tutorials/difference-jdk-vs-jre-vs-jvm#common-errors-and-debugging
https://www.digitalocean.com/community/tutorials/difference-jdk-vs-jre-vs-jvm#java-not-recognized-error

 Ensure Java is installed correctly.
 Add Java to the system PATH:

export PATH=$PATH:/path/to/java/bin # Linux/macOS

setx PATH "%PATH%;C:\Path\To\Java\bin" # Windows

Copy

Mismatch Between JDK and JVM Versions

A version mismatch can cause runtime errors.

Solution:

Check both versions:

java -version

javac -version

Copy

Ensure they match and update Java accordingly.

FAQs
1. What is JDK, JRE, JVM, and JIT in Java?

 JDK (Java Development Kit) includes the tools needed for Java development.
 JRE (Java Runtime Environment) provides libraries and JVM for running Java

applications.
 JVM (Java Virtual Machine) executes Java bytecode.
 JIT (Just-In-Time compiler) improves execution speed by compiling bytecode to native

machine code at runtime.

Component Description Includes
Platform-

Dependent
Use Case

Installation

Requirements

Development

Tools

Execution

Environment

JDK

Java

Development

Kit

JRE, Java

compiler,

debugger, core

classes

Yes

For development,

compilation, and

execution of Java

programs

Separate

installers for

Windows, Mac,

and Unix

Java compiler,

debugger,

JShell

JVM

JVM
Java Virtual

Machine

Converts byte

code to

machine-

specific code

Yes

Automatically

included with

JRE installation

Included with

JRE installation
None JVM

JRE Java Runtime JVM, Java Yes For executing Separate None JVM

https://www.digitalocean.com/community/tutorials/difference-jdk-vs-jre-vs-jvm#mismatch-between-jdk-and-jvm-versions
https://www.digitalocean.com/community/tutorials/difference-jdk-vs-jre-vs-jvm#faqs
https://www.digitalocean.com/community/tutorials/difference-jdk-vs-jre-vs-jvm#1-what-is-jdk-jre-jvm-and-jit-in-java

Component Description Includes
Platform-

Dependent
Use Case

Installation

Requirements

Development

Tools

Execution

Environment

Environment binaries, other

classes

Java programs

without

development or

compilation

installers for

Windows, Mac,

and Unix

JIT
Just-In-Time

compiler

Improves

execution

speed by

compiling

bytecode to

native

machine code

at runtime

Yes

Automatically

included with

JVM

Included with

JVM
None JVM

2. What is the role of JDK in Java programming?

JDK provides the necessary tools for writing, compiling, and debugging Java
applications.

3. Do I need JDK or JRE to run Java applications?

If you only need to run Java applications, JRE is sufficient. If you need to develop Java
applications, you need JDK.

4. Why do I have JRE instead of JDK?

If you installed Java for running applications rather than development, JRE was likely
installed instead of JDK.

5. What is the difference between JDK, JRE, and JVM?

Component Includes Description

JDK
JRE, Development

Tools

Java Development Kit, includes tools for development, compilation, and

execution of Java programs

https://www.digitalocean.com/community/tutorials/difference-jdk-vs-jre-vs-jvm#2-what-is-the-role-of-jdk-in-java-programming
https://www.digitalocean.com/community/tutorials/difference-jdk-vs-jre-vs-jvm#3-do-i-need-jdk-or-jre-to-run-java-applications
https://www.digitalocean.com/community/tutorials/difference-jdk-vs-jre-vs-jvm#4-why-do-i-have-jre-instead-of-jdk
https://www.digitalocean.com/community/tutorials/difference-jdk-vs-jre-vs-jvm#5-what-is-the-difference-between-jdk-jre-and-jvm

Component Includes Description

JRE
JVM, Runtime

Libraries

Java Runtime Environment, provides libraries and JVM for running Java

applications

JVM - Java Virtual Machine, executes Java bytecode

6. What is the difference between JVM and JIT?

Component Description Functionality

JVM Java Virtual Machine Executes Java bytecode

JIT Just-In-Time compiler Compiles bytecode into machine code for better performance

JVM executes Java programs, while JIT compiles bytecode into machine code for better
performance.

Conclusion

In conclusion, understanding the differences between JDK, JRE, and JVM is crucial for
any Java developer. The JDK provides the tools needed for Java development, the JRE
includes the JVM and libraries for running Java applications, and the JVM executes
Java bytecode. The JIT compiler, included with the JVM, enhances execution speed by
compiling bytecode to native machine code at runtime. By recognizing the roles of each
component, developers can effectively choose the right tools for their projects and
ensure efficient execution of their Java applications.

For more information on installing Java, refer to How to Install Java with apt.
To dive deeper into Java’s memory management, check out Java JVM Memory Model
and Memory Management in Java.
Additionally, explore Getting Started with PyPy for an alternative to traditional Python
execution.
Thanks for learning with the DigitalOcean Community. Check out our offerings for
compute, storage, networking, and managed databases.

Learn more about our products

https://www.digitalocean.com/community/tutorials/difference-jdk-vs-jre-vs-jvm#6-what-is-the-difference-between-jvm-and-jit
https://www.digitalocean.com/community/tutorials/difference-jdk-vs-jre-vs-jvm#conclusion
https://www.digitalocean.com/community/tutorial-collections/how-to-install-java-with-apt
https://www.digitalocean.com/community/tutorials/java-jvm-memory-model-memory-management-in-java
https://www.digitalocean.com/community/tutorials/java-jvm-memory-model-memory-management-in-java
https://www.digitalocean.com/community/tutorials/getting-started-with-pypy
https://www.digitalocean.com/products

